Electrophysiology of GABAergic transmission of single intergeniculate leaflet neurons in rat.

نویسندگان

  • Katarzyna Palus
  • Łukasz Chrobok
  • Marian H Lewandowski
چکیده

The intergeniculate leaflet (IGL) of the thalamus constitutes a small but important part of the neural network controlling circadian activity in rodents. It appears that IGL integrates photic cues from retina with non-photic information originating from different nonspecific brain systems. Subsequently, this integrated signal is passed to the master biological clock - the suprachiasmatic nuclei (SCN). The common neurotransmitter of biological clock neural structures, the gamma-amino-butyric acid (GABA) is expressed in many, if not all, IGL and SCN neurons. Whole-cell patch clamp in vitro electrophysiological experiments were performed in order to evaluate GABA's influence on single IGL neurons in rat. Most neurons were hyperpolarized by GABA application and this effect was caused by activation of GABAA as well as GABAB receptors. The presence of GABAB receptors in rat's IGL has been suggested for the first time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slow oscillation circuit of the intergeniculate leaflet.

The slow oscillation circuit of the intergeniculate leaflet seems to constitute a natural basic rhythm of the neuronal mechanism of mammalian biological clock. The results of studies conducted so far indicate that photic information flowing from ganglion cells of the retina is necessary for its generation. On the other hand, this circuit is maintained thanks to the oscillatory activity of GABAe...

متن کامل

Electrophysiology and pharmacology of the optic input to the rat intergeniculate leaflet in vitro.

The mammalian intergeniculate leaflet (IGL) of the thalamus is a neuronal element of the circadian timing system, which receives direct photic input from the retina. The purpose of this study was to analyze responses of rat IGL neurons in vitro to optic tract stimulation and to identify neurotransmitters released from the terminals of retinal ganglion cells in this structure. Following optic tr...

متن کامل

Effect of sub-effective dose of GABA agonists on attenuation of morphine tolerance in rats: Behavioral and electrophysiological studies

GABAergic drugs can change analgesic effect of morphine. Wide dynamic range (WDR) neurons play an important role in pain transmission and may change behaviors in morphine tolerance. In this study WDR neuron behaviors in morphine tolerant rats and rats treated with GABA agonists, were recorded to elucidate the effect of morphine and GABA agonists on WDR behavioral changes. Rats were divided to 4...

متن کامل

Effect of sub-effective dose of GABA agonists on attenuation of morphine tolerance in rats: Behavioral and electrophysiological studies

GABAergic drugs can change analgesic effect of morphine. Wide dynamic range (WDR) neurons play an important role in pain transmission and may change behaviors in morphine tolerance. In this study WDR neuron behaviors in morphine tolerant rats and rats treated with GABA agonists, were recorded to elucidate the effect of morphine and GABA agonists on WDR behavioral changes. Rats were divided to 4...

متن کامل

Juxtacellular recording/labeling analysis of physiological and anatomical characteristics of rat intergeniculate leaflet neurons.

The thalamic intergeniculate leaflet (IGL) is involved in mediating effects of both photic and nonphotic stimuli on mammalian circadian rhythms. IGL neurons containing neuropeptide Y (NPY) have been implicated in mediating nonphotic effects, but little is known about those involved in photic entrainment. We used juxtacellular recording/labeling in rats to characterize both photic responses and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta neurobiologiae experimentalis

دوره 75 1  شماره 

صفحات  -

تاریخ انتشار 2015